An introduction to numerical
methods using BLAS

Georgios Kafanas

GreekLUG

26 November 2023

Overview

e \What are numerical libraries and how to use them?
e Functionality and uses of BLAS
e How computer architecture (caches) affect implementation of computations

Not all evaluations are the same!

Consider a simple matrix multiplication

(
\
(
\

d

)\

I

|

1 2
3 4

I

1
2

Can be evaluated in 2 ways, with a dot product or a scalar-matrix product:
(1 2)

3 4)-:
6)

(1)

Software libraries

e BLAS is a typical software library

e Libraries can be used in 2 forms:
o Static
o Dynamic

libblas.so

Application liblapack.so

libblas.so

libumfpack.so

Figure 1: Shared library dependencies of an example application.

i OpenRadioss

T

MUMPS |

A

Scal APACK |

g

LAPACK PBLAS |

T N

| BLAS BLACS

T

| MPI |

Software libraries

: OpenRadioss

| ScaLAPACK

g,

LAPACK PBLAS |

T N

| BLAS BLACS

T

MPI

OpenRadioss

T

MUMPS

ScalLAPACK: libsdalapack.so
| ScalAPACK

LAPACK |

3

Practical session

Compile and install:

e BLAS: https://qgitlab.com/greeklug/lapack/-/tree/greeklug-presentation
e Matrix-Market I/O library:
https://qitlab.com/greeklug/matrix market exchange formats

https://gitlab.com/greeklug/lapack/-/tree/greeklug-presentation
https://gitlab.com/greeklug/matrix_market_exchange_formats

Tools for inspecting libraries and executables

e Doesthis 1ibopeblas.so’ instance implement the CBLAS interface?

ELF™"a Linux exeatable walkthrough "S55

rowEaroe saoe

DISSECTED FILE

HEADER"

SMPLEARM SECTIONS

SECTIONS MAMES

SICTONHEADER TreLE

LOADING PROCESS

1HEADER 2 MAPPING 3EXECUTION TRIVIA
THE ELF HEADER IS PARSED THE FILE IS MAPPED IN MEMORY ENTRY IS CALLED — - -
THE PROGRAM HEADER IS PARSED ~ ACCORDING TO TS SEGMENT(S) SYSCALLS”™ ARE ACCESSED VIA THE ELF WAS FRST SPECIFIED BY US. L AND UL
SECTIONS ARE NOT USED) _ SYSCALL NUMBER N THE R7 REGISTER FOR UNX SYSTEM V. IN 1984

- CALLING INSTRUCTION SVC
THE ELF IS USED, AMONG OTHERS, IN:

- LINUX. ANDROID, "BSD. SOLARIS, BEOS

- PSP, PLAYSTATION 2-4, DREAMCAST, GAMECUBE. Wil

- VARIOUS OSES MADE BY SAMSUNG, ERICSSON, NOKIA,

- MCROCONTROLLERS FROM ATMEL, TEXAS INSTRUMENTS

Tools for inspecting libraries and executables

ELE"a Linux executable walkthrough "S5 L4

To investigate the shared object: DSSECTED FLE
e readelf: display information about ELF files R —
o --a11: all sections smow wms =
O --file-header: information about o 7 —
interoperability
0 --dynamic: dynamically linked libraries and T ——
other information S
e objdump: display information about objects —
o —--syms: information for symbols (functions and =
variables)
o --demangle: restore human readable names for

objects generated from C++

e nm: list symbols
o —-dynamic: list only export symbols (only for dynamic
libraries)

Tools for inspecting libraries and executables

ELE"a Linux executable walkthrough "S5ttt &

Even extract information about function DISSECTED FLE
signatures (needs debug info, —-g):

T

SMPLEARM - SECTIONS

e Read debug info with readelf R

O --debug-dump=info

LOADING PROCESS
2MAPPING 3EXECUTION TRIVIA
THEFLEIS R
THE ELF WAS FRS'

e Partially disassemble with objdump W, T

TO ITS SEGMENTI

0 —--disassemble ”@?fi

O ——-disassemble-all Do e

Practical session

e Compile the tutorial example code: https://gitlab.com/greeklug/blas-tutorial
e Call some function Matrix Market 1/0
e Can you break the linking? Try removing the linker option: —-—no-as-needed

Symbol Resultion
Conflicts

libopenblas.so D - -~~~ } ~

Application liblapack.so libblas.so

libumfpack.so

Figure 2: Wrong symbol resolution after relinking the example application.

https://gitlab.com/greeklug/blas-tutorial

Data representation

e Computer memory is linear
e Matrices are linearized:

135
(246) ~ [1]2]3]4]5]6

typedef struct _dense_matrix {
/* Data structure storing matrix A */
double* a; // Pointer to the C array with the entries of A
int m; // Number of rows in A

int n; // Number of columns in A
} dense_matrix;

Caching

e Direct linearization is not sufficient for good performance!
e Caches affect the speed of memory access

for (int i = 0; 1 < n; ++1i) {

128 Bytes 64 Bytes 1-8" Bytes

Memory |< > 12 |« > L1 |«

“up to 64 for some special SIMD instructions sets such as AVX-512

CPU

Caching

e Direct linearization is not sufficient for good performance!
e Caches affect the speed of memory access

for (int 1 = 0; 1 < n; ++1i)
{ Vectorizable:

Non-vectorizable:

Caching

e Direct linearization is not sufficient for good performance!
e Caches affect the speed of memory access

#fpragma omp simd aligned(a:32)
for (int 1 = 0; 1 < 4*n; i+=1) {

Vectorizable:

} Non-vectorizable:

Caching

e Direct linearization is not sufficient for good performance!
e Caches affect the speed of memory access

for (int 1 = 0; 1 < n; 1+=1) {

Vectorizable:

]
4*%1+2] = 0; Non-vectorizable:
]

Not all evaluations are the same!

Revisiting the simple matrix-vector product:

|

1 2
3 4

I

1
2

) |

The dot product evaluation jumps across cache lines!

(1 2)

\(3)

(
\
(
\

d

)\

I

(1)

Caching

e Direct linearization is not sufficient for good performance!
e Caches affect the speed of memory access

typedef struct _dense_matrix {
/% Data structure storing matrix A */
double* a; // Pointer to the C array with the entries of A

int m; // Number of rows in A

int n; // Number of columns in A

int nzmax; // Maximum number of entries that can be stored in array a
int lda; // Leading dimension of the array A

} dense_matrix;

Practical session

e Call some function (DGEMV) of BLAS
e Try the code with aligned memory allocation!

BLAS naming conventions

e Qperations organized by computational complexity

o Level 1: O(n)
o Level 1: O(n"2)
o Level 1: O(n*3)

e BLAS supports various number types and numerical precision (first part of
function names):

* single precision (S) with 32-bits,
* double precision (D) with 64-bits,
* single precision complex (C) with 64-bits, and

* double precision complex (Z) with 128-bits.

BLAS naming conventions

Matrix properties are
exploited to save space and
reduce memory accesses:

GE:

SY:

TR:

SP:

TP:

a1l A 413
a1 Aaz 4z
as1 4z ass

ail a4z 413
a1p a2 A4
a13 a3 ass

[a11 [a21 [a31 [ar2 [ax [az [a13 423 [ass |

|ﬂ11|1121|ﬂ31|ﬂ12]ﬂ22| ¥

a3

a(-|x-

|ﬂ11]ﬂ21|ﬂ31|!112]ﬂ22| ¥

a13

* | *

|

[a11 |21 [431 [a1z [a [a13]

[a11 |21 [431 [a12 [a [a13]

BLAS naming conventions

e Matrix properties are exploited to save space and reduce memory accesses.
e This forms the second part of the name:

Storage type
Algebraic properties | Standard (-) Banded (B) Packed (P)
General (G) GE GB
Symmetric (S) SY SB SP
Hermitian (H) HE HB HP
Triangular (T) TR TB TP

BLAS naming conventions

e Last part is the type of the operants:
o V:vector
o M: matrix

e Forinstance:

DGEMV: DGEMM:
o D: double precision o D: double precision
o GE: general matrix o GE: general matrix
o MV: matrix-vector multiplication o MM: matrix-matrix multiplication

e The convention does not work always, especially for Level 1 operations
o DAXPY:y «—ax+y

Course notes and resources

Will appear in the tutorial directory: https://qitlab.com/greeklug/blas-tutorial

Official BLAS webpage: https://www.netlib.org/blas/

e Quick reference (function list): https://www.netlib.org/blas/
e Reference BLAS implementation:
https://www.netlib.org/lapack/explore-html/d1/df9/group__blas.html

https://gitlab.com/greeklug/blas-tutorial
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.netlib.org/lapack/explore-html/d1/df9/group__blas.html

Seminar on numerical methods coming soon in EurroCC:
https://www.eurocc-access.eu/services/training/

@ ABOUT US ~ SERVICES ~ NEWS ~ LOGIN

EURO
Training
Find upcoming training offers from the National Competence Centres here!
. From beginner to expert courses, whether C++ or Open MP, there’s some-
thing for everybody. If you want to see all training offers, including past
- courses, go to the HPC in Europe Portal!

Buentfeed; m Search events:| Type text to sea

Language of
Difficulty Level Instruction

Format Scientific Domain Technical Domain Project

Country l Audience

https://www.eurocc-access.eu/services/training/

Thank you!

Study Programme

Master in High Performance Computing

Overview Career Teaching Staff Admissions

Deepen your career in com-
puting

The Master in High Performance Computing (HPC) at the University of
Luxembourg is a 2-year innovative Master's programme that trains the next
generation of HPC experts in Luxembourg and Europe

Learn more Teachers

The programme at a glance - 120 ECTS
Duration £\Q Language / Admissions 1€ Fees
2 years/ 4 sem EN EU: 1 Feb-28 Aug 2024 €200/sem
Non-EU: 1 Feb-30 Apr 2024

. =
@ Format: Full time Il Campus: Belval [z Available places: 40

Study Programme

Master in Mathematics - Mathematical Modelling and Computational Sciences

Overview New Students Career Teaching Staff Admissions

L&%%

Launch your careerin
Mathematical Modelling and
Computational Sciences

The two-year track in Mathematical Modelling and Computational Sciences of
the Master in Mathematics focuses on both computational and fundamental
aspects of mathematics and prepares for immediate employment after gradu-
ation. You will become thoroughly acquainted with industrial mathematics due
to the possibility of doing a summer internship and your master’s thesis with a
local company and thus require fruitful insights into the real world.

Learn more Teachers

The Programme at a glance - 120 ECTS

Duration: fb Teaching Languages / Admissions: =" Fees:
2 years / 4 sem EN EU: 1 Feb 2023 - 31 Aug 200€/ sem. (semester
2023 1)

Non-EU: 1 Feb 2023 -
30 Apr 2023

EUMaster4HPC

European Master
For High Performance Computing

Application Research & Industry
Applicants from participant countries are eligible for receiving EU funds.

000

e Master in High Performance Computing:
https://www.uni.lu/fstm-en/study-programs/master-in-high-performance-comp

uting/

e Master in Mathematics - Mathematical Modelling and Computational
Sciences:
https://www.uni.lu/fstm-en/study-programs/master-in-mathematics-mathemati
cal-modelling-and-computational-sciences/

e FEuropean Master For High Performance Computing:
https://eumasterdhpc.uni.lu/

https://www.uni.lu/fstm-en/study-programs/master-in-high-performance-computing/
https://www.uni.lu/fstm-en/study-programs/master-in-high-performance-computing/
https://www.uni.lu/fstm-en/study-programs/master-in-mathematics-mathematical-modelling-and-computational-sciences/
https://www.uni.lu/fstm-en/study-programs/master-in-mathematics-mathematical-modelling-and-computational-sciences/
https://eumaster4hpc.uni.lu/

